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HIF-1 mediates the Warburg effect in clear cell
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Abstract Hypoxia-inducible factor 1 (HIF-1) is a transcrip-
tion factor that functions as a master regulator of oxygen
homeostasis in all metazoan species. O2-dependent hydrox-
ylation of two proline residues in the HIF-1α subunit is
necessary for the binding of the von Hippel–Lindau (VHL)
protein, which is a component of a ubiquitin protein ligase
that ubiquitinates HIF-1α, leading to its degradation by the
proteasome. In the majority of cases of the clear cell type of
renal carcinoma, both VHL genes are inactivated by
mutation or epigenetic silencing, leading to dysregulated
HIF-1 transcriptional activity. VHL loss-of-function leads,
under aerobic conditions, to a HIF-1-dependent reprogram-
ming of glucose and energy metabolism that includes
increased glucose uptake, glycolysis, and lactate production
accompanied by a reciprocal decrease in respiration. These
findings delineate for the first time the molecular mecha-
nisms underlying the Warburg effect in a human cancer.
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Introduction

In the presence of O2, cells convert glucose to pyruvate,
which is transported into the mitochondria, converted to
acetyl coenzyme A (acetyl CoA) and metabolized via the
tricaryboxylic acid (TCA) cycle, yielding reducing
equivalents that are used to generate ATP through the
process of oxidative phosphorylation (Lehninger 1982).
Under hypoxic conditions, pyruvate is instead converted to
lactate, resulting in a net synthesis of 2 mol of ATP rather
than the 38 mol that are produced by the oxidative
metabolism of glucose. Hypoxic cells compensate for the
inefficiency of glycolytic metabolism by greatly increasing
their uptake of glucose, thus increasing flux through the
pathway.

Cancer cells, especially in metastatic disease, are
characterized by increased glucose uptake, increased lactate
production, and decreased respiration, even under aerobic
conditions, which is known as the Warburg effect. The
increased glucose uptake that is required to maintain ATP
production under conditions of reduced respiration is such a
universal feature of metastatic cancer cells that it is used to
detect them clinically by positron emission tomography
(PET scan) following the administration of [18F]-deoxyglu-
cose (reviewed in Gatenby and Gillies 2004). Increased
aerobic glycolysis was also observed in cells infected with
Rous sarcoma virus, in which it represented one of the
earliest detectable signs of cellular transformation (Steck
et al. 1968; Singh et al. 1974; Carroll et al. 1978). However,
the underlying molecular mechanisms and adaptive signif-
icance of this universal feature of advanced cancer cells
have not been fully elucidated in the eight decades since
Warburg’s pioneering studies were performed.
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Regulation of oxygen homeostasis by HIF-1

HIF-1 was identified as a DNA-binding activity, which was
induced in nuclear extracts of cells that had been subjected to
hypoxia, and which activated transcription of the human EPO
gene, which encodes erythropoietin, the hormone that
controls red blood cell production and thus, blood oxygen-
carrying capacity (Semenza and Wang 1992). The binding of
HIF-1 to an 18-bp oligonucleotide corresponding to the HIF-1
site in the EPO gene was used to purify the protein by DNA
affinity chromatography from 100 liters of HeLa cells grown
in suspension culture (Wang and Semenza 1995).

The protein purification and subsequent isolation of cDNA
clones revealed that HIF-1 was a heterodimer composed of
HIF-1α and HIF-1β subunits that belonged to the basic helix–
loop–helix family of transcription factors (Wang et al. 1995).
HIF-1α protein expression was induced by hypoxia (Wang
et al. 1995), with levels increasing exponentially as cellular
O2 concentration was decreased from 20 to 0.5%, which
correspond to PO2 values of 140 to 3.5 mmHg, respectively
(Jiang et al. 1996). HIF-1α levels rapidly decayed following
reoxygenation with a half-life of less than 5 min in post-
hypoxic cultured cells (Wang et al. 1995; Jewell et al. 2001)

and less than 1 min in isolated ventilated lung prepara-
tions subjected to hypoxia and reoxygenation (Yu et al.
1998). No protein has been shown to have a shorter half-life.
Database searches identified HIF-2α, a protein with struc-
tural similarity to HIF-1α that is regulated by O2 and
dimerizes with HIF-1β to regulate a set of target genes that
overlaps with those regulated by HIF-1α: HIF-1β hetero-
dimers (Tian et al. 1997; Wiesener et al. 1998; Elvidge et al.
2006).

The molecular basis for the precise regulation of HIF-1α
levels was demonstrated to involve the ubiquitination and
proteasomal degradation of HIF-1α (Salceda and Caro
1997; Huang et al. 1998; Kallio et al. 1999). The von
Hippel–Lindau tumor suppressor protein (VHL) is required
for this process, as clear cell renal carcinoma cells lacking
functional VHL constitutively express HIF-1α and HIF-1
target genes under non-hypoxic conditions (Maxwell et al.
1999; Cockman et al. 2000). VHL forms a complex with
elongin B, elongin C, cullin 2, and RBX1 to form an E3
ubiquitin–protein ligase capable of functioning with E1
ubiquitin-activating and E2 ubiquitin-conjugating enzymes
to mediate the ubiquitination of HIF-1α (Kamura et al.
2000; Fig. 1).
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Fig. 1 Regulation of glucose metabolism by HIF-1. Under normoxic
conditions, HIF-1α (or HIF-2α) is hydroxylated by PHD2, bound by
VHL, ubiquitinated by an E3 ligase complex containing elongin B,
elongin C, cullin 2, and Rbx1, and degraded by the proteasome. VHL
loss-of-function (in clear cell renal carcinoma) or hypoxic conditions
leads to the accumulation of non-hydroxylated, non-ubiquitinated HIF-
1α (or HIF-2α), which dimerizes with HIF-1β, recruits the coactivator

p300 (or CBP) and activates the transcription of genes encoding glucose
transporter (GLUT) 1 and 3, hexokinase (HK) 1 and 2, glucosephos-
phate isomerase (GPI), phosphofructokinase (PFK) L, aldolase (ALD)
A and C, triosephosphate isomerase (TPI), glyceraldephosphate
dehydrogenase (GAPDH), phosphoglycerate kinase (PGK) 1, enolase
(ENO) 1, pyruvate kinase (PK) M, lactate dehydrogenase (LDH) A, and
pyruvate dehydrogenase kinase (PDK) 1
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Hydroxylation of proline residue 402 and/or 564 in
human HIF-1α is required for the binding of VHL (Epstein
et al. 2001; Ivan et al. 2001; Jaakkola et al. 2001; Yu et al.
2001). Three prolyl hydroxylases were identified in
mammalian cells and shown to utilize O2 as a substrate to
generate 4-hydroxyproline at residue 402 and/or 564 of
HIF-1α (Bruick and McKnight 2001; Epstein et al. 2001;
Ivan et al. 2002). Interestingly, the hydroxylation reaction
utilizes the TCA cycle intermediate α-ketoglutarate as a
co-substrate and generates succinate and CO2 as side
products. Under hypoxic conditions, the rate of hydroxyl-
ation declines, either as a result of substrate (O2) limitation
or inhibition of hydroxylase activity as a result of a
physiological increase in mitochondrial generation of
reactive oxygen species (ROS) that may oxidize the Fe
(II) ion in the catalytic site (Guzy et al. 2005). Decreased
hydroxylation under hypoxic conditions is the basis for
reduced binding of VHL, leading to increased steady-state
levels of HIF-1α. Thus, changes in oxygenation are directly
transduced to the nucleus as changes in HIF-1α levels and
HIF-1 transcriptional activity.

HIF-1 regulates the expression of hundreds of genes in
human cells (Manalo et al. 2005; Elvidge et al. 2006) and is
essential for embryonic development in mice (Iyer et al.
1998; Ryan et al. 1998). Many of these genes contribute to
two essential functions of HIF-1. First, HIF-1 promotes the
delivery of oxygen to cells through its control of erythro-
poiesis and angiogenesis (reviewed in Hirota and Semenza
2006). Second, HIF-1 promotes cell survival under hypoxic
conditions by reprogramming cellular glucose and energy
metabolism. The remainder of this review will focus on
recent discoveries regarding this latter program of gene
expression.

Regulation of glucose transport, glycolysis, and lactate
production by HIF-1

Hypoxia response elements containing HIF-1 binding sites
were identified in genes encoding several glucose trans-
porters and glycolytic enzymes (Semenza et al. 1994, 1996;
Ebert et al. 1995; Firth et al. 1995; Fig. 1). Analysis of
mRNA expression in mouse embryonic stem cells that were
either wild type or homozygous for a knockout allele at the
Hif1a locus encoding the HIF-1α subunit revealed that
expression of the genes encoding glucose transporters 1 and
3 and the glycolytic enzymes hexokinase 1 and 2, glucose
phosphate isomerase, phosphofructokinase L, aldolase A and
C, triosephosphate isomerase, phosphoglycerate kinase 1,
enolase 1, pyruvate kinase M, and lactate dehydrogenase A
(LDH-A) were all regulated by HIF-1 (Fig. 1), representing
the most extensive example of coordinate metabolic control
at the transcriptional level that has been described in any

metazoan species (Iyer et al. 1998). These studies provided
a molecular basis for the observed stimulation of glucose
transport and glycolysis that are necessary to maintain ATP
production in hypoxic cells (Seagroves et al. 2001). In
human VHL-deficient renal cell carcinoma, upregulation of
GLUT1 protein expression has been demonstrated at the
earliest stages of tumor formation (Mandriota et al. 2002).

Regulation of pyruvate metabolism by HIF-1

The results described above suggest that the upregulation of
LDH-A results in increased conversion of pyruvate to
lactate at the expense of mitochondrial utilization of
pyruvate as a substrate for pyruvate dehydrogenase
(PDH), which converts pyruvate to acetyl CoA. However,
recent studies have demonstrated that HIF-1 plays a direct
role in actively shunting pyruvate away from the mito-
chondria through its regulation of the PDK1 gene encoding
PDH kinase 1 in multiple cell types including VHL-
deficient renal carcinoma cells (Kim et al. 2006;
Papandreou et al. 2006; Fig. 1). Phosphorylation of the
catalytic subunit of PDH by PDK1 inactivates the enzyme.
In mouse embryo fibroblasts cultured from HIF-1α-null
embryos, prolonged hypoxic incubation induces ROS
production leading to cell death that can be rescued by
forced expression of PDK1 (Kim et al. 2006). HIF-1α-null
mouse embryo fibroblasts also manifest increased cell death
(relative to wild type cells) when incubated under hypoxic
conditions in the presence of the hypoxic cytotoxin
tirapazamine (Papandreou et al. 2006). These results
provided the first evidence that HIF-1 actively inhibits the
oxidative metabolism of glucose under hypoxic conditions.

Regulation of mitochondrial biogenesis by HIF-1

Reduced levels of mitochondrial DNA and respiratory
chain proteins as well as increased levels of glycolytic
enzymes have been reported in renal cell carcinoma
(Simonnet et al. 2002; Unwin et al. 2003; Meierhofer
et al. 2004; Craven et al. 2006). Forced expression of wild-
type VHL protein in cell lines derived from VHL-deficient
renal carcinoma leads to increased mitochondrial electron
transport complex activity and increased levels of mito-
chondrial DNA and respiratory chain proteins (Hervouet
et al. 2005), but the molecular pathways leading to these
alterations have not been delineated (Hervouet and Godinot
2006). We have recently demonstrated that introduction of a
VHL expression vector into the clear cell renal carcinoma cell
lines results in a dramatic increase in mitochondrial mass,
mitochondrial DNA, and O2 consumption (Zhang et al.
2007). Similar results were obtained when the cells were
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transfected with an expression vector encoding a dominant
negative form of HIF-1α (Jiang et al. 1996) that can
dimerize with HIF-1β but cannot bind to DNA or activate
transcription (Zhang et al. 2007).

Perspective

The recent studies reviewed above have demonstrated that in
VHL-deficient clear cell renal carcinoma, HIF-1 mediates
increased glucose uptake, increased lactate production, and
decreased respiration, thus delineating for the first time the
molecular mechanisms underlying the switch from oxidative
to glycolytic metabolism in human cancer. A large body of
data suggests that HIF-1 may also contribute to the Warburg
effect in other human cancers (Semenza 2003). High LDH
levels and low mitochondrial respiratory chain content are
each associated with poor prognosis in advanced renal cell
carcinoma (Simonnet et al. 2002; Motzer et al. 2004).
Additional studies are required to investigate whether the
increased dependence of these cancer cells on glycolytic
metabolism can be exploited therapeutically.
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